Custom Search

Sunday, August 23, 2009

Lobster

Clawed lobsters compose a kinsfolk (Nephropidae, sometimes also Homaridae) of large marine crustaceans. Lobsters are economically important as seafood, forming the basis of a global business that nets US$31.8 billion in change annually.

Though individual different groups of crustaceans are famous as \"lobsters,\" the armed lobsters are most often associated with the name. They are also revered for their taste. Clawed lobsters are not closely related to spiny lobsters or slipper lobsters, which have no claws (chelae), or squat lobsters. The closest relatives of armed lobsters are the reef lobster Enoplometopus and the threesome families of freshwater crayfish.

Lobsters are institute in all the oceans of the world. They springy on rocky, sandy, or turbid bottoms from the shoreline to beyond the edge of the transcontinental shelf. They generally springy singly in crevices or in burrows under rocks.

They are invertebrates, with a hard conserving exoskeleton. Like most arthropods, lobsters must molt in order to grow, leaving them undefendable during this time. During the molting process, several species haw experience a modify in color. Lobsters hit 10 legs, with the face ones adapted to claws.

As arthropods, lobsters hit not achieved the nervous grouping utilization of cepholopod molluscs, nor do they hit the advantages of extraordinary eyesight. They do however, exhibit threesome important evolutionary advances that hit led to their great success: an exoskeleton: a strong, lightweight, form-fitted outside covering and support, striated muscle: a quick, strong, lightweight form of muscle that makes rapid shitting and flight possible, and articulation: the knowledge to bend appendeges at limited points.

Lobsters typically eat live food, consisting of fish, mollusks, other crustaceans, worms, and some plant life. Occasionally, they module scavenge if necessary, and haw resort to cannibalism in captivity; however, this has not been observed in the wild. Although lobster wound has been found in the stomachs of lobsters, this is because lobsters module eat their drop wound after molting. Lobsters acquire throughout their lives and it is not unusual for a lobster to live for more than 100 years. One such 100 year older lobster was donated to the Huntsman serviceman Science Center in St. Andrews, New Brunswick. In fact, lobsters haw show \"negligible senescence\", in that they crapper effectively live indefinitely, barring injury, disease, capture, etc. They crapper thus accomplish impressive sizes. According to the Guinness World Records, the largest lobster was caught in Nova Scotia, Canada, and weighed 20.15 kg (44.4 lb).

Although armed lobsters, same most other arthropods, are mostly bilaterally symmetrical, they often possess unequal, specialized claws, same the king crab. A freshly caught lobster module have a claw which is full and fleshy, not atrophied. The morphology of the lobster includes the cephalothorax which is the nous fused with the thorax, both of which are covered by the carapace, of chitinous composition, and the abdomen. The lobster's nous consists of antennae, antennules, mandibles, the first and ordinal maxillae, and the first, second, and ordinal maxillipeds. Because a lobster lives in a murky environment at the bottom of the ocean, its vision is poor and it mostly uses its antennae as sensors. Studies have shown that the lobster eye is bacilliform with a reflective structure atop a convex retina. In contrast, most complex eyes use refractive ray concentrators (lenses) and a cotyloid retina. The abdomen of the lobster includes swimmerets and its tail is imperturbable of uropods and the telson.

Lobsters, like snails and spiders, have blue murder cod to the proximity of haemocyanin, which contains copper. (In contrast, mammals and many another animals, have red murder cod to the proximity of haemoglobin, which contains iron.) Inside lobsters is a naif goopy center titled tomalley, which serves as the hepatopancreas, fulfilling the functions of both liver and pancreas.

In general, lobsters are 25 cm to 50 cm daylong ( 10 to 20 inches ) and move slowly by walking on the bottom of the sea floor. However, when they flee, they swim backwards quickly by curling and uncurling their abdomen. A speed of five meters per second (about 11 mph) has been recorded. This is known as the caridoid escape reaction.

Friday, April 24, 2009

Octupos




The octopus (pronounced /ˈɒktəpəs/, from Greek ὀκτάπους (oktapous), "eight-footed", with plural forms: octopuses /ˈɒktəpʊsɪz/, octopi /ˈɒktəpaɪ/, or octopodes /ɒkˈtɒpədiːz/, see below) is a cephalopod of the order Octopoda that inhabits many diverse regions of the ocean, especially coral reefs. The term may also refer to only those creatures in the genus Octopus. In the larger sense, there are around 300 recognized octopus species, which is over one-third of the total number of known cephalopod species.

An octopus has eight flexible arms, which trail behind it as it swims. Most octopuses have no internal or external skeleton, allowing them to squeeze through tight places. An octopus has a hard beak, with its mouth at the center point of the arms. Octopuses are highly intelligent, probably the most intelligent invertebrates. They are known to build "forts" and "traps" in the wild, and for rearranging tanks and burying other animals alive in domestication[citation needed]. For this reason, they are quite notorious among aquarium operators. For defense against predators, they hide, flee quickly, expel ink, or use color-changing camouflage. Octopuses are bilaterally symmetrical, like other cephalopods, with two eyes and four pairs of arms. All octopuses are venomous, but only the small blue-ringed octopuses are deadly to humans.




Biology

Octopuses are characterized by their eight arms (as distinct from the tentacles found in squid and cuttlefish), usually bearing suction cups. These arms are a type of muscular hydrostat. Unlike most other cephalopods, the majority of octopuses – those in the suborder most commonly known, Incirrina – have almost entirely soft bodies with no internal skeleton. They have neither a protective outer shell like the nautilus, nor any vestige of an internal shell or bones, like cuttlefish or squid. A beak, similar in shape to a parrot's beak, is the only hard part of their body. This enables them to squeeze through very narrow slits between underwater rocks, which is very helpful when they are fleeing from morays or other predatory fish. The octopuses in the less familiar Cirrina suborder have two fins and an internal shell, generally reducing their ability to squeeze into small spaces.

Octopuses have a relatively short life expectancy, and some species live for as little as six months. Larger species, such as the North Pacific Giant Octopus, may live for up to five years under suitable circumstances. However, reproduction is a cause of death: males can only live for a few months after mating, and females die shortly after their eggs hatch. They neglect to eat during the (roughly) one month period spent taking care of their unhatched eggs, but they don't die of starvation. Endocrine secretions from the two optic glands are the cause of genetically-programmed death (and if these glands are surgically removed, the octopus may live many months beyond reproduction, until she finally starves). Stauroteuthis syrtensis, a finned octopus of the suborder Cirrina

Octopuses have three hearts. Two pump blood through each of the two gills, while the third pumps blood through the body. Octopus blood contains the copper-rich protein hemocyanin for transporting oxygen. Although less efficient under normal conditions than the iron-rich hemoglobin of vertebrates, in cold conditions with low oxygen pressure, hemocyanin oxygen transportation is more efficient than hemoglobin oxygen transportation. The hemocyanin is dissolved in the plasma instead of being carried within red blood cells and gives the blood a blue color. Octopuses draw water into their mantle cavity where it passes through its gills. As mollusks, octopuses have gills that are finely divided and vascularized outgrowths of either the outer or the inner body surface.




Intelligence

Octopuses are highly intelligent, likely more so than any other order of invertebrates. The exact extent of their intelligence and learning capability is much debated among biologists, but maze and problem-solving experiments have shown that they do have both short- and long-term memory. Their short lifespans limit the amount they can ultimately learn. There has been much speculation to the effect that almost all octopus behaviors are independently learned rather than instinct-based, although this remains largely unproven. They learn almost no behaviors from their parents, with whom young octopuses have very little contact.

An octopus has a highly complex nervous system, only part of which is localized in its brain. Two-thirds of an octopus' neurons are found in the nerve cords of its arms, which have a remarkable amount of autonomy. Octopus arms show a wide variety of complex reflex actions arising on at least three different levels of the nervous system. Some octopuses, such as the Mimic Octopus, will move their arms in ways that emulate the movements of other sea creatures.

In laboratory experiments, octopuses can be readily trained to distinguish between different shapes and patterns. They have been reported to practice observational learning, although the validity of these findings is widely contested on a number of grounds. Octopuses have also been observed in what some have described as play: repeatedly releasing bottles or toys into a circular current in their aquariums and then catching them. Octopuses often break out of their aquariums and sometimes into others in search of food. They have even boarded fishing boats and opened holds to eat crabs.

In some countries, octopuses are on the list of experimental animals on which surgery may not be performed without anesthesia. In the UK, cephalopods such as octopuses are regarded as honorary vertebrates under the Animals (Scientific Procedures) Act 1986 and other cruelty to animals legislation, extending to them protections not normally afforded to invertebrates.




Defense

An octopus' main (primary) defense is to hide, either not to be seen at all, or not to be detected as an octopus. Octopuses have several secondary defenses (defenses they use once they have been seen by a predator). The most common secondary defense is fast escape. Other defenses include the use of ink sacs, camouflage, and autotomising limbs.

Most octopuses can eject a thick blackish ink in a large cloud to aid in escaping from predators. The main colouring agent of the ink is melanin, which is the same chemical that gives humans their hair and skin colour. This ink cloud is thought to dull smell, which is particularly useful for evading predators that are dependent on smell for hunting, such as sharks. Ink clouds of some species might serve as pseudomorphs, or decoys that the predator attacks instead.

An octopus' camouflage is aided by certain specialized skin cells which can change the apparent color, opacity, and reflectiveness of the epidermis. Chromatophores contain yellow, orange, red, brown, or black pigments; most species have three of these colors, while some have two or four. Other color-changing cells are reflective iridophores, and leucophores (white). This color-changing ability can also be used to communicate with or warn other octopuses. The very venomous blue-ringed octopus becomes bright yellow with blue rings when it is provoked. Octopuses can use muscles in the skin to change the texture of their mantle in order to achieve a greater camouflage. In some species the mantle can take on the spiky appearance of seaweed, or the scraggly, bumpy texture of a rock, among other disguises. However in some species skin anatomy is limited to relatively patternless shades of one color, and limited skin texture. It is thought that octopuses that are day-active and/or live in complex habitats such as coral reefs have evolved more complex skin than their nocturnal and/or sand-dwelling relatives.

When under attack, some octopuses can perform arm autotomy, in a similar manner to the way skinks and other lizards detach their tails. The crawling arm serves as a distraction to would-be predators.

A few species, such as the Mimic Octopus, have a fourth defense mechanism. They can combine their highly flexible bodies with their color changing ability to accurately mimic other, more dangerous animals such as lionfish, sea snakes, and eels.




Reproduction

When octopuses reproduce, males use a specialized arm called a hectocotylus to insert spermatophores (packets of sperm) into the female's mantle cavity. The hectocotylus in benthic octopuses is usually the third right arm. Males die within a few months of mating. In some species, the female octopus can keep the sperm alive inside her for weeks until her eggs are mature. After they have been fertilized, the female lays about 200,000 eggs (this figure dramatically varies between families, genera, species and also individuals). The female hangs these eggs in strings from the ceiling of her lair, or individually attaches them to the substrate depending on the species. The female cares for the eggs, guarding them against predators, and gently blowing currents of water over them so that they get enough oxygen. The female does not eat during the roughly one-month period spent taking care of the unhatched eggs. At around the time the eggs hatch, the mother dies and the young larval octopuses spend a period of time drifting in clouds of plankton, where they feed on copepods, larval crabs and larval starfish until they are ready to sink down to the bottom of the ocean, where the cycle repeats itself. In some deeper dwelling species, the young do not go through this period. This is a dangerous time for the larval octopuses; as they become part of the plankton cloud they are vulnerable to many plankton eaters.




Sensation

Octopuses have keen eyesight. Although their slit-shaped pupils might be expected to afflict them with astigmatism, it appears that this is not a problem in the light levels in which an octopus typically hunts. They do not appear to have color vision, although they can distinguish the polarization of light. Attached to the brain are two special organs, called statocysts, that allow the octopus to sense the orientation of its body relative to horizontal. An autonomic response keeps the octopus' eyes oriented so that the pupil slit is always horizontal.

Octopuses also have an excellent sense of touch. An octopus' suction cups are equipped with chemoreceptors so that the octopus can taste what it is touching. The arms contain tension sensors so that the octopus knows whether its arms are stretched out. However, the octopus has a very poor proprioceptive sense. The tension receptors are not sufficient for the octopus brain to determine the position of the octopus' body or arms. (It is not clear that the octopus brain would be capable of processing the large amount of information that this would require; the flexibility of an octopus' arms is much greater than that of the limbs of vertebrates, which devote large areas of cerebral cortex to the processing of proprioceptive inputs.) As a result, the octopus does not possess stereognosis; that is, it does not form a mental image of the overall shape of the object it is handling. It can detect local texture variations, but cannot integrate the information into a larger picture.

The neurological autonomy of the arms means that the octopus has great difficulty learning about the detailed effects of its motions. The brain may issue a high-level command to the arms, but the nerve cords in the arms execute the details. There is no neurological path for the brain to receive feedback about just how its command was executed by the arms; the only way it knows just what motions were made is by observing the arms visually.




Locomotion

Octopuses move about by crawling or swimming. Their main means of slow travel is crawling, with some swimming. Jet propulsion is their fastest means of locomotion, followed by swimming and bipedal walking.

They crawl by walking on their arms, usually on many at once, on both solid and soft surfaces, while supported in water. In 2005 it was reported that some octopuses (Adopus aculeatus and Amphioctopus marginatus under current taxonomy) can walk on two arms, while at the same time resembling plant matter. This form of locomotion allows these octopuses to move quickly away from a potential predator while possibly not triggering that predator's search image for octopus (food). Octopuses lack bones and are extremely vulnerable to predators.

Octopuses swim by expelling a jet of water from a contractile mantle, and aiming it via a muscular siphon.